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Background… 

!  Exascale machines will provide orders of magnitude greater 
potential performance and memory capacity. 

!  We will use those machines for new science / analysis capabilities 
and not simply to run larger problems with finer grids. 

!  Thus we cannot rely on having larger local working sets to 
amortize other artifacts of system performance. 

!  We must be focused on the impact of exascale on important 
applications and not certain benchmarks 
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Overarching questions… 

!  Given there are 100M-1B lines of legacy code, we need to know 
how well today’s apps (as written today) will run at exascale? 
(need a pre-silicon answer)  

!  When codes are predicted to perform poorly (less than the exaflop 
expectorations), what constrained their performance (software, 
architecture, algorithm) 

!  How can these performance deficiencies be fixed? 
"  new compilation techniques 
"  programming models 
"  algorithms 
"  architectural research 

!  If it is addressed, what is the ultimate performance potential. 
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Today, Flop’s are Free 

!  Over the last few decades, improvements in peak flop/s have 
quickly outstripped improvements in peak bandwidth. 

!  Today, it is >50x more expensive to move a word from DRAM than 
to perform a floating-point operation on it. 

!  The kernels in most real applications exhibit such limited data 
locality that there is O(1) words of data movement per floating-point 
operation. 

!  With data movement now the primary bottleneck to performance, 
some quip that “flops are free” 

!  This paradigm is not invalidated just because one can find or 
construct a benchmark with sufficient locality to be compute-bound 
(linpack). 
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What about at Exascale? 

!  The lack of locality will persist (flops are still free) 
!  However, a new set of challenges may emerge… 

"  synchronization across thousands of cores (this overhead is required for 
OpenMP and CUDA threading constructs) 

"  insufficient parallelism (expressed or inherent) in kernels 
"  complex data movement interactions on both inter-core and inter-node 

networks 

!  If these displace data movement as the preeminent bottleneck, then 
in general, data movement (bandwidth) may seem free ! 
"  Today, flop/s are over provisioned given the lack of locality in real apps 
"  At Exascale, Bandwidth may be over provisioned due to a lack of 

parallelism in real applications. 
"  This rule of thumb for exascale wouldn’t be invalidated just because one 

can find or construct (e.g. STREAM) a benchmark for which bandwidth 
or flop/s is the bottleneck. 
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Overhead of Synchronization 
(Coarse vs. Fine-grained Parallelism) 
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Overheads for Threading 

!  OpenMP-threaded applications are in effect bulk synchronous… 
"  …sequential code… 
"  …OpenMP region (with implied barrier at end)… 
"  …sequential code… 

!  MPI communication can similarly act as a synchronization point. 
!  This overhead for synchronization sets limits on the application of 

fine-grained parallelism. 

!  We can model the execution of a loop nest as some function of… 
"  computation (flop’s) 
"  data movement 
"  synchronization overhead (e.g. OpenMP overheads) 

!  When the cost data movement is high, it seems like “flops are free”,   
but when the cost of synchronization is high, it will seem like 
data movement is free… 
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Overheads for Threading 

!  Consider a nondescript application 
where threading is applied in bulk 
to units of work (e.g. matrices, 
vectors, boxes…) 

!  Each unit requires a threading 
construct to start, run, synchronize, 
and terminate. (e.g. omp parallel 
region or CUDA kernel) 
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!  Assuming data movement would 
nominally dominate, we can easily 
model the effective bandwidth as a 
function of… 
"  the processor’s pin bandwidth 
"  the size of the unit of work 
"  fixed 10us overhead (no worse 

when we have 100x more cores) 
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Overheads for Threading 

!  …viewed as a fraction of the pin 
(peak) bandwidth… 

!  For today’s architectures (left) it is 
easy to get near peak bandwidth. 

!  At exascale, the usual approach to 
threading computation on objects 
less than 8MB (e.g. an 643 grid), 
will never achieve better than 
10% of peak bandwidth !! 

!  In fact, threading coarse 512MB 
objects only attains 87% of pin 
bandwidth. 
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!  Similar conditions arise on compute-limited kernels…   
!  To attain 90% of peak (10TF), each processor needs to perform 

approximately 100 million floating-point operations between synchronization 
points. 
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Overheads for Threading 

!  We can also visualize the time 
required to perform the loop nest. 

!  For applications that apply coarse-
grained parallelism (purple) any 
additional bandwidth is beneficial 

!  Applications that attempt fine-
grained parallelization can not 
exploit more than 1TB/s of 
bandwidth if overheads remain 
around 10us. 

10 

1.E-06 

1.E-05 

1.E-04 

1.E-03 

1.E-02 

1.E-01 

1.E+00 

8.E+09 8.E+10 8.E+11 8.E+12 
R

un
 T

im
e 

Pin Bandwidth 

512MB 
64MB 
8MB 
1MB 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Overheads for Threading 
(summary of issues) 

!  If we were to simply compile and run an existing application on a 
exascale processor, we may see minimal increases in performance 
and may only attain 10% of peak bandwidth (and a smaller 
fraction of peak flop/s). 

!  Clearly, it is imperative we have tools today that … 
"  precisely identify where application of TLP is inefficient so that the 

codes can be fixed before the machine is on the floor (pre-silicon). 
"  identify what the synchronization minimizing implementation is. 

!  Vendors may use this information to drive their design point.  i.e.  
"  can they get by with 10us overheads at 10K cores? 
"  or do they need sub microsecond overheads for global synchronization? 

!  From a CS research perspective, knowing how critical this issue is, 
allows us to quantify the importance of alternate execution and 
threading models. 

11 



LAWRENCE BERKELEY NATIONAL LABORATORY 

F U T U R E   T E C H N O L O G I E S   G R O U P 

Insufficient Parallelism ? 
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Insufficient Parallelism in code 

!  Thus far, we have assumed our effective bandwidth is simply peak 
bandwidth amortized by overhead/synchronization time 

!  Unfortunately, kernels as written today often attempt to apply a 
simple #pragma omp parallel for construct to various loops 
or iteration spaces. 
"  In the multicore era with 4-8 cores, even short (64-iteration) outer loops 

can be efficiently parallelized in this manner. 
"  As the number of threads increases, load balancing will emerge (64 

iterations on 14 SM’s or 57 cores). 
"  Ultimately, some cores may not receive any loop iterations (128 

iterations on 10K cores). 

!  What’s the effect of under parallelizing a kernel? 
"  The effect of insufficient parallelism on peak flop/s is obvious. 
"  The effect on peak bandwidth can be subtle --- Specifically, how many 

threads are needed to fully saturate the memory subsystem ? 
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Insufficient Parallelism in code 

!  We can model Little’s Law = 
omnipresent concurrency 
needed to fully utilize the 
memory bandwidth. 
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Little's Law for CPU Bandwidth... 

!  On today’s CPU architectures, 
OOO+HW prefetchers can 
inject sufficient concurrency per 
thread to hit peak BW with a 
subset of the cores. 
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Insufficient Parallelism in code 

!  We can model Little’s Law = 
omnipresent concurrency 
needed to fully utilize the 
memory bandwidth. 
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Little's Law for Exascale... 

!  However on exascale architectures, where power-hungry OOO and 
prefetchers have been eliminated in favor of multithreading, we need 
10s of thousands of threads to get peak bandwidth. 

!  Today, many applications may only express 64- to 128-way TLP.  If 
run at exascale, they may only attain 1% of peak bandwidth !! 

!  Needing all the threads always running for max BW may cast doubt 
on powering down cores to save energy when BW limited. 
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Insufficient Parallelism in code 
(summary of issues) 

!  Need tools (or info from vendors) that… 
"  quantify the relationship between TLP and effective bandwidth.  

(today, we simply run benchmarks like stream) 
"  highlight how a processor responds to increasing the number of 

streams per thread (today, on BGQ, having too many threads can 
cause contention in the prefetchers can impede net bandwidth) 

"  precisely identify regions of applications that are under 
parallelized and quantify the penalty. 

"  provide a high-water mark for parallelism.  When algorithmic high-
water mark is less than the demands of the processor, significant 
algorithmic rework is mandated. 
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Do we have to worry about 
NoC Topologies as well ? 
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On-Chip Network (NoC)… 

!  When we had simple on-chip networks (e.g. 
star or crossbars), performance was readily 
understood and could be easily modeled. 
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!  unfortunately, programmers (let alone 
software or runtimes) lack intuition for even 
simple topologies likes rings and meshes. 

!  how differently do applications perform on 
these two NoC topologies? C C C M 
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!  When scaled to 1000’s of cores, modeling 
and simulation tools will be essential in 
predicting and understanding performance. 
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On-Chip Network (NoC)… 

!  Unfortunately, with scalable yet complex NoC topologies… 
"  memory bandwidth and latencies may vary from core to core. 
"  requisite concurrency will vary from core to core (overprovision?) 

!  Moreover, highly-optimized applications will perform complex, on-
chip inter-thread data exchanges avoid DRAM bottlenecks. 
"  This creates a complex interaction between NoC topology and the 

communication pattern 
"  programmers are ill-equipped to quantify these effects (intuition fails) 

!  We cannot assume core injection bandwidth is the bottleneck 
anymore than we can assume DRAM bandwidth is the bottleneck.  

!  The NoC may be the bottleneck for real applications. 
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On-Chip Network (NoC) 
… summary of issues 

!  We must be focused on real application drivers and not contrived 
benchmarks that highlight a particular NoC topology… 

!  We tools that … 
"  determine if streaming DRAM bandwidth is sensitive to NoC 

topology in the presence of 10’s of thousands of threads/requests. 
"  can identify which real codes / kernels are sensitive to on-node 

(inter-thread) synchronization and data exchanges. 
"  can quantify the performance of complex data exchanges for various 

NoC topologies and parameters expected in exascale machines. 
"  how placement of threads (or variability in the placement of threads) 

effects performance or latency. 
"  Does variability demand new approaches to load balancing? 
"  Would novel NoC topologies/functionality enable new algorithms? 

!  Static analysis may address some of these, but increasingly 
component simulation or processor emulation are required 
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Algorithms and 
Distributed Memory 
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Algorithmic Effects and MPI 
(Global Interconnect) 

!  Many algorithms have >O(N) computational complexity 
!  At exascale… 

"  although we may have 100x more total (NVRAM) memory per node, 
exascale is not about finer meshes.  It is about enabling new science. 

"  We may run lots of similarly sized “solves” per node as today on 
1-10x more nodes than today (perhaps 10x bigger overall). 

"  Larger problems may require more iterations, but message size may not 
increase significantly. 

!  We need to run scaling experiments to understand the 
algorithmic effects that increase time-to-solution. 

!  We need network models and simulators that allow us to 
understand the performance challenges of real applications 
"  P2P communication on smallish messages 
"  limited injection rates (MPI_THREAD_PARALLEL is rare) 
"  collectives at full machine scale 
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Summary 
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Summary… 

!  Just as a lack of locality makes flop/s seem free today, we’ve 
enumerated a number of hazards that might make bandwidth seem 
free at exascale for the key applications we have today. 

!  Rather than dictating solutions, we have enumerated a list of key 
questions that need to be answered via modeling and simulation. 

!  Using the results from this effort will allow one to identify where the 
major roadblocks are on the road to exascale. 
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